Selasa, 27 Maret 2018

SONIKASI


SONIKASI

SONIKASI

Sonikasi adalah suatu teknologi yang memanfaatkan gelombang ultrasonik. Ultrasonik adalah suara atau getaran dengan frekuensi yang terlalu tinggi untuk bisa didengar oleh manusia, yaitu kira-kira di atas 20 kHz. Gelombang ultrasonik dapat merambat dalam medium padat, cair, dan gas. Proses sonikasi ini mengubah sinyal listrik menjadi getaran fisik yang dapat diarahkan untuk suatu bahan dengan menggunakan alat yang bernama sonikator. Sonikasi ini biasanya dilakukan untuk memecah senyawa atau sel untuk pemeriksaan lebih lanjut. Getaran ini memiliki efek yang sangat kuat pada larutan, menyebabkan pecahnya molekul dan putusnya sel. 
Bagian utama dari perangkat sonikasi adalah generator listrik ultrasonik. Perangkat ini membuat sinyal (biasanya sekitar 20 kHz) yang berkekuatan ke transduser. Transduser ini mengubah sinyal listrik dengan menggunakan kristal piezoelektrik, atau kristal yang merespon langsung ke listrik dengan menciptakan getaran mekanis dan kemudian dikeluarkan melewati probeProbe sonikasi mengirimkan getaran ke larutan yang disonikasi. Probe ini akan bergerak seiring dengan getaran dan mentransmisikan ke dalam larutan. Probe bergerak naik dan turun pada tingkat kecepatan yang tinggi, meskipun amplitudo dapat dikontrol dan dipilih berdasarkan kualitas larutan yang disonikasi. Gerakan cepat probe menimbulkan efek yang disebut kavitasi. Rangkaian alat sonikasi dapat dilihat pada Gambar I.

Gambar I. Rangkaian Alat Sonikasi

Dalam hal kinetika kimia, ultrasonik dapat meningkatkan kereaktifan kimia pada suatu sistem yang secara efektif bertindak sebagai katalis untuk lebih mereaktifkan atom – atom dan molekul dalam sistem. Pada reaksi yang menggunakan bahan padat, ultrasonik ini berfungsi untuk memecah padatan dari energi yang ditimbulkan akibat runtuhnya kavitasi. Dampaknya ialah luas permukaan padatan lebih besar sehingga laju reaksi meningkat (Suslick, 1989). Semakin lama waktu sonikasi, ukuran partikel cenderung lebih homogen dan mengecil yang akhirnya menuju ukuran nanopartikel yang stabil serta penggumpalan pun semakin berkurang. Hal ini disebabkan karena gelombang kejut pada metode sonikasi dapat memisahkan penggumpalan partikel (agglomeration) dan terjadi dispersi sempurna dengan penambahan surfaktan sebagai penstabil. 
Daya ultrasonik meningkatkan perubahan kimia dan fisik dalam media cair melalui generasi dan pecah dari gelembung kavitasi. Seperti ultrasonik, gelombang suara disebarkan melalui serangkaian kompresi dan penghalusan gelombang diinduksi dalam molekul medium yang dilewatinya. Pada daya yang cukup tinggi siklus penghalusan dapat melebihi kekuatan menarik dari molekul cairan dan kavitasi gelembung akan terbentuk. Gelembung tersebut tumbuh dengan proses yang dikenal sebagai difusi yang dikoreksi yaitu sejumlah kecil uap (atau gas) dari media memasuki gelembung selama fase ekspansi dan tidak sepenuhnya dikeluarkan selama kompresi. Gelembung berkembang selama periode beberapa siklus untuk ukuran kesetimbangan untuk frekuensi tertentu digunakan. Ini adalah fenomena gelembung ketika pecah dalam siklus kompresi yang menghasilkan energi untuk efek kimia dan mekanik (Gambar II). Pecahnya gelembung kavitasi merupakan fenomena luar biasa yang disebabkan oleh kekuatan suara. Dalam sistem cair pada frekuensi ultrasonik 20kHz setiap pecahnya gelembung kavitasi bertindak sebagai lokal "hotspot" menghasilkan suhu sekitar 4.000 K dan tekanan lebih dari 1000 atmosfer. 


Gambar II. Generasi Acoustic Cavitation
 

Menurut Gogate berkaitan dengan reaksi kimia, kavitasi dapat mempengaruhi hal berikut:
a. Mengurangi waktu reaksi
b. Meningkatkan yield dalam reaksi kimia
c. Mengurangi ”force” suhu dan tekanan
d. Mengurangi periode induksi dan reaksi yang diinginkan
e. Meningkatkan selektivitas
f. Membangkitkan radikal bebas        
 
Sebagai tambahan terhadap timbulnya kondisi-kondisi ekstrem di dalam gelembung juga dihasilkan efek mekanik seperti terjadinya collaps gelembung yang sangat cepat. Hal ini juga sangat penting dalam bidang sintesis dan termasuk juga degassing yang sangat cepat dari kavitasi cairan serta dalam hal pembentukan kristal yang cepat. 

PEMBERSIH ULTRASONIK




Apa itu pembersih ultrasonik?
Pembersih ultrasonik adalah alat yang menggunakan ultrasound untuk mengangkat kotoran dari perhiasan Anda. Keunggulan pembersih ultrasonik adalah mampu membersihkan bagian perhiasan yang sulit dijangkau saat membersihkan dengan metode konvensional.

Larutan pembersih apakah yang boleh digunakan?
Ada dua opsi larutan yang bisa Anda pilih. Pertama, menggunakan pembersih perhiasan yang bisa Anda temukan di toko-toko tertentu.
Kedua, membuat larutan pembersih sendiri. Caranya adalah isi tangki pembersih dengan air dan tambahkan satu sendok amoniak, lalu tambahkan dengan cairan pembersih. Setelah itu, nyalakan mesin dan biarkan mesin menyala selama 5-10 menit sebelum memasukkan perhiasan agar larutan tercampur dengan baik.
Catatan:
Salah satu kesalahan yang sering dilakukan orang saat meggunakan pembersih ultrasonik adalah menggunakan air dingin. Padahal, air hangat mampu membuat larutan pembersih bekerja lebih baik.

Bagaimana proses pembersihannya?
Setelah Anda mengisi tangki dengan air hangat dan larutan pembersih, Anda dapat memasukkan perhiasan ke tangki. Jangan memasukkan banyak perhiasan sekaligus untuk mencegah tergoresnya perhiasan. Nyalakan alat dan biarkan bekerja hingga perhiasan bersih. Waktu pencucian ini bervariasi mulai dari satu hingga 20 menit, tergantung seberapa kotor perhiasan yang dibersihkan.
Setelah selesai membersihkan, matikan alat dan biarkan perhiasan di dalam tangki kira 5-10 menit agar kotoran mengendap ke bawah tangki. Setelah perhiasan dikeluarkan, Anda bisa membersihkan perhiasan dengan kain lembut untuk memastikan sisa kotoran sudah dibersihkan semua. Kemudian bilas perhiasan untuk membersihkan dari sisa larutan pembersih dan keringkan dengan kain lembut.

Seberapa sering waktu yang yang diperbolehkan untuk mencuci perhiasan dengan pembersih ultrasonik?
Frekuensi membersihkan perhiasan tergantung dengan seberapa cepat perhiasan Anda kotor. Umumnya, Anda dapat membersihkan perhiasan dengan pembersih ultrasonik setiap beberapa minggu sekali. Jika Anda mengenakan perhiasan setiap hari dan perhiasan tersebut cepat kotor, Anda dapat membersihkannya setiap minggu. Akan tetapi, pastikan perhiasan Anda terbuat dari bahan yang tahan dengan ultrasound dan tidak cepat rusak saat dibersihkan terlalu sering.

Perhiasan apa yang tidak boleh dibersihkan dengan pembersih ultrasonik?
Tidak semua perhiasan dapat dibersihkan dengan pembersih ultrasonik. Hal ini dikarenakan banyak batu permata yang mudah rusak oleh ultrasound. Jangan mencuci perhiasan dengan batu permata yang lunak seperti opal, lapis lazuli, zamrud, turquoise, dan lainnya dengan pembersih ultrasonik. Tidak hanya itu, perhiasan organik seperti mutiara, coral, dam ambel juga bisa rusak jika dicuci dengan pembersih ini.

sumber : https://www.orori.com/ororeads/cara-menggunakan-pembersih-perhiasan-ultrasonik

TERAPI ULTRASONIK


Apa itu Terapi Ultrasound

Terapi ultrasound adalah metode pengobatan yang menggunakan teknologi ultrasound atau gelombang suara untuk merangsang jaringan tubuh yang mengalami kerusakan. Walaupun telah lama digunakan di bidang kedokteran untuk berbagai tujuan, teknologi ultrasound lebih dikenal sebagai alat pemeriksaan daripada sebagai alat terapi. Salah satu keuntungan terapeutik dari ultrasound yang belum terlalu dikenal adalah pengobatan cedera otot. Oleh karena itu, terapi ultrasound sering digunakan dalam pengobatan muskuloskeletal dan cedera akibat olahraga.
Keberhasilan penggunaan teknologi ultrasound sebagai alat terapi bergantung pada kemampuannya untuk merangsang jaringan yang ada di bawah kulit dengan menggunakan gelombang suara frekuensi tinggi, mulai dari 800.000 Hz – 2.000.000 Hz. Efek penyembuhan dari ultrasound pertama ditemukan pada sekitar tahun 1940. Awalnya, terapi ini hanya digunakan oleh terapis fisik dan okupasi. Namun, saat ini penggunaan terapi ultrasound telah menyebar ke cabang ilmu kedokteran lainnya.

Siapa yang Perlu Menjalani Terapi Ultrasound dan Hasil yang Diharapkan

Saat ini, terapi ultrasound lebih banyak digunakan dalam pengobatan cedera muskuloskeletal. Pasien yang dapat memanfaatkan teknologi ultrasound sebagai terapi muskuloskeletal adalah mereka yang menderita penyakit berikut:
  • Plantar fasciitis (peradangan pada fascia plantar di tumit)
  • Siku tenis
  • Nyeri pada bagian bawah punggung
  • Penyakit temporomandibular
  • Ligamen yang terkilir
  • Otot yang tegang
  • Tendonitis (peradangan tendon)
  • Peradangan sendi
  • Metatarsalgia (peradangan sendi metatarsal di telapak kaki)
  • Iritasi sendi facet
  • Sindrom tabrakan (impingement syndrome)
  • Bursitis (peradangan bursa/kantung cairan sendi)
  • Osteoartritis (pengapuran sendi)
  • Jaringan luka
  • Artritis reumatoid
Namun, tergantung pada cara dan tingkat penggunaan terapi ultrasound, terapi ini juga dapat digunakan untuk menangani penyakit yang serius dan kronis seperti kanker. Jenis metode terapi ultrasound antara lain adalah:
  • Lithotripsi (untuk menghancurkan batu di saluran kemih)
  • Terapi kanker
  • Pemberian obat tepat sasaran dengan ultrasound
  • Ultrasound Intensitas Tinggi (High Intensity Focused Ultrasound/HIFU)
  • Pemberian obat dengan ultrasound trans-dermal
  • Penghentian pendarahan (hemostasis) dengan ultrasound
  • Trombolisis dengan bantuan ultrasound
Setelah dipancarkan pada bagian tubuh yang membutuhkan pengobatan, teknologi ultrasound akan menyebabkan dua efek utama: termal dan non-termal. Efek termal disebabkan oleh penyerapan gelombang suara ke jaringan halus tubuh, sedangkan efek non-termal disebabkan oleh microstreaming, streaming akustik, dan kavitasi, atau akibat bergetarnya jaringan yang menyebabkan terbentuknya gelembung mikroskopis.

Cara Kerja Terapi Ultrasound

Terapi ultrasound memiliki banyak tingkat, tergantung pada frekuensi dan intensitas dari suara yang digunakan. Tingkat keragaman yang tinggi ini sangat menguntungkan untuk alat terapeutik karena terapis dapat menyesuaikan intensitas terapi agar sesuai dengan penyakit yang ditangani. Namun pada dasarnya terapi ultrasound bekerja dengan menggunakan gelombang suara yang ketika dipancarkan pada bagian tertentu tubuh dapat meningkatkan suhu dari jaringan tubuh yang rusak.
Untuk pengobatan muskuloskeletal, terapi ultrasound bekerja dengan tiga cara:
  • Mempercepat proses penyembuhan dengan memperlancar aliran darah di bagian tubuh yang mengalami gangguan.
  • Menyembuhkan peradangan dan edema (penimbunan cairan), sehingga dapat mengurangi rasa sakit.
  • Memperlunak jaringan luka
Terapi ultrasound juga dapat digunakan untuk:
  • Menghancurkan timbunan zat asing di dalam tubuh, seperti timbunan kalkulus, mis. batu ginjal dan batu empedu; ketika telah dipecahkan menjadi bagian-bagian yang lebih kecil, dapat dikeluarkan dari tubuh dengan aman dan mudah
  • Meningkatkan proses penyerapan dan keberhasilan obat di bagian tubuh tertentu, mis. memastikan bahwa obat kemoterapi mengenai sel kanker otak yang tepat
  • Menghilangkan timbunan kotoran ketika tindakan pembersihan gigi
  • Membantu sedot lemak, mis. sedot lemak dengan bantuan ultrasound
  • Membantu dalam skleroterapi atau perawatan laser endovenous, yang dapat digunakan sebagai metode penghilangan varises non-bedah
  • Memicu agar gigi atau tulang dapat tumbuh kembali (hanya ketika menggunakan denyut ultrasound intensitas rendah)
  • Menghilangkan penghalang darah di otak (blood-brain barrier) agar obat dapat diserap tubuh dengan baik
  • Bekerja bersama antibiotik untuk menghancurkan bakteri
Untuk mendapatkan manfaat dari terapi ini, ultrasound harus dipancarkan pada kulit dari bagian tubuh yang mengalami kerusakan dengan menggunakan transduser atau alat yang dirancang khusus untuk terapi ini. Saat gelombang suara telah dipancarkan, gelombang tersebut akan diserap oleh jaringan halus tubuh, seperti ligamen, tendon, dan fascia.

Kemungkinan Komplikasi dan Resiko Terapi Ultrasound

Walaupun teknologi ultrasound telah banyak digunakan, namun tetap ada panduan cara penggunaan ultrasound yang aman. Panduan ini bertujuan untuk mencegah risiko tertentu yang dapat terjadi, sekecil apapun kemungkinannya. Risiko tersebut meliputi:
  • Luka bakar akibat terapi ultrasound
  • Pendarahan akibat terapi mekanis
  • Efek biologis yang tidak terlalu berpengaruh namun tidak dapat diperkirakan
sumber : https://www.docdoc.com/id/info/procedure/terapi-ultrasound

apa sih SONAR itu ??


PENGERTIAN

Sonar (Singkatan dari bahasa Inggris: sound navigation and ranging), merupakan istilah Amerika yang pertama kali digunakan semasa Perang Dunia, yang berarti penjarakan dan navigasi suara, adalah sebuah teknik yang menggunakan penjalaran suara dalam air untuk navigasi atau mendeteksi kendaraan air lainnya. Sementara itu, Inggris punya sebutan lain untuk sonar, yakni ASDIC (Anti-Submarine Detection Investigation Committee).

Hasil gambar untuk SONAR

CARA KERJA

Sonar merupakan sistem yang menggunakan gelombang suara bawah air yang dipancarkan dan dipantulkan untuk mendeteksi dan menetapkan lokasi objek di bawah laut atau untuk mengukur jarak bawah laut. Sejauh ini sonar telah luas digunakan untuk mendeteksi kapal selam dan ranjau, mendeteksi kedalaman, penangkapan ikan komersial, keselamatan penyelaman, dan komunikasi di laut.
Cara kerja perlengkapan sonar adalah dengan mengirim gelombang suara bawah permukaan dan kemudian menunggu untuk gelombang pantulan (echo). Data suara dipancar ulang ke operator melalui pengeras suara atau ditayangkan pada monitor.

JENIS SONAR

Alat sonar pertama digolongkan sebagai sonar pasif, di mana tidak ada sinyal yang dikirim keluar.
Pada tahun 1918 Inggris dan AS membuat sistem aktif, di mana sinyal sonar aktif dikirim dan diterima kembali. Misalnya saja untuk mengetahui jarak satu objek, petugas sonar mengukur waktu yang diperlukan oleh sinyal sejak dipancarkan hingga diterima kembali. Karena tidak ada sinyal yang dikirim pada sistem pasif, alat hanya mendengarkan. Pada sistem pasif maju, ada bank data sonik (sumber bunyi) yang besar. Sistem komputer menggunakan bank data tadi untuk mengenali kelas kapal, juga aksinya (kecepatan atau senjata yang ditembakkan).

Sumber : https://id.wikipedia.org/wiki/Sonar

apa sih ULTRASONOGRAFI ?? ~ (USG)


 Hasil gambar untuk ULTRASONOGRAFI


PENGERTIAN

Ultrasonografi medis (sonografi) adalah sebuah teknik diagnostik pencitraan menggunakan suara ultra yang digunakan untuk mencitrakan organ internal dan otot, ukuran mereka, struktur, dan luka patologi, membuat teknik ini berguna untuk memeriksa organ. Sonografi obstetrik biasa digunakan ketika masa kehamilan.
Pilihan frekuensi menentukan resolusi gambar dan penembusan ke dalam tubuh pasien. Diagnostik sonografi umumnya beroperasi pada frekuensi dari 2 sampai 13 megahertz.
Sedangkan dalam fisika istilah "suara ultra" termasuk ke seluruh energi akustik dengan sebuah frekuensi di atas pendengaran manusia (20.000 Hertz), penggunaan umumnya dalam penggambaran medis melibatkan sekelompok frekuensi yang ratusan kali lebih tinggi.

KEGUNAAN

Ultrasonografi atau yang lebih dikenal dengan singkatan USG digunakan luas dalam medis. Pelaksanaan prosedur diagnosis atau terapi dapat dilakukan dengan bantuan ultrasonografi (misalnya untuk biopsi atau pengeluaran cairan). Biasanya menggunakan probe yang digenggam yang diletakkan di atas pasien dan digerakkan: gel berair memastikan penyerasian antara pasien dan probe.
Dalam kasus kehamilan, Ultrasonografi (USG) digunakan oleh dokter spesialis kandungan (DSOG) untuk memperkirakan usia kandungan dan memperkirakan hari persalinan. Dalam dunia kedokteran secara luas, alat USG (ultrasonografi) digunakan sebagai alat bantu untuk melakukan diagnosa atas bagian tubuh yang terbangun dari cairan.

sumber : https://id.wikipedia.org/wiki/Ultrasonografi_medis

pendengaran pada hewan LENGKAP


rekuensi Suara Yang Bisa Didengar Binatang

Frekuensi suara yang bisa didengar oleh binatang sebenarnya adalah bermacam-macam tergantung dari jenis binatang itu sendiri. Ada yang mendekati dengan batas frekuensi yang bisa didengar oleh manusia dan ada juga yang jauh diatas frekuensi pendengaran manusia. Berdasarkan range frekuensi, gelombang suara dapat dibedakan menjadi 3 (tiga) macam yaitu :
  1. Infrasonic (1 Hz sd 20 Hz)
  2. Acoustic (20 Hz sd 20.000 Hz)
  3. Ultrasonic ( > 20.000 H)

Berikut beberapa contoh hewan dengan batas frekuensi yang bisa didengarnya :

1. Frekuensi Yang Bisa Didengar Kelelawar
Kelelawar merupakan hewan yang bisa terbang dalam kegelapan. Mereka tidak menggunakan mata untuk melihat dalam gelap melainkan dengan menggunakan suara dengan frekuensi tinggi atau yang lebih dikenal sebagai gelombang ultrasonic. Ketika terbang kelelawar memancarkan gelombang ultrasonic yang kemudian gelombang tersebut akan diterima kembali oleh kelelawar setelah dipantulkan kembali oleh benda atau dinding yang berada dihadapannya. Dengan merasakan lamanya jeda waktu antara pengiriman gelombang dengan penerimaan maka kelelawar dapat menentukan seberapa jauh jarak tubuhnya dengan benda tersebut, itu sebabnya mereka tidak akan menabrak dinding atau benda dihadapan mereka walaupun dalam keadaan gelap sekalipun. Teori ini sekarang sudah dimanfaatkan oleh manusia untuk mengukur jarak suatu benda, seperti pada pengukuran jarak kedalaman laut dan pendeteksi dinding penghalang pada aplikasi robot. Batas frekuensi yang bisa didengar oleh kelelawar adalah 3.000 HZ sd 120.000 Hz, dimana frekuensi ini jauh diatas frekuensi suara yang bisa didengar oleh manusia yakni 20 Hz sd 20.000 Hz.

2. Frekuensi Yang Bisa Didengar Kucing
Kucing merupakan binatang karnivora yang sering dijadikan sebagai binatang peliharaan. Binatang yang satu ini juga bisa mendengar suara dengan frekuensi diatas pendengaran manusia yaitu 100 Hz sd 60.000 Hz.
3. Frekuensi Yang Bisa Didengar Gajah
Gajah merupakan binatang herbivora yang berutubuh besar dan bisa mendengarkan suara dengan frekuensi infrasonic atau suara dengan frekuensi dibawah frekuensi pendengaran manusia. Batas frekuensi yang bisa didengar oleh gajah adalah 1 Hz sd 20.000 Hz.
4. Frekuensi Yang Bisa Didengar Tikus
Tikus merupakan salah satu binatang yang banyak merugikan dibandingkan menguntungkan manusia. Hewan ini disimbolkan untuk para koruptor yang kerjaannya suka mencuri hak orang lain. Batas frekuensi yang bisa didengar oleh tikus adalah 1.000 Hz sd 100.000 Hz. Dengan memanfaatkan gelombang ultrasonic kita dapat mengusir binatang ini dari rumah kita. Berikut rangkaian pengusir tikus

5. Frekuensi Yang Bisa Didengar Anjing
Anjing merupakan binatang yang sering digunakan sebagai penjaga keamanan dan sebagai pelacak jejak karena mempunyai penciuman yang sangat tajam. Hewan ini juga bisa mendengarkan suara dengan frekuensi di atas frekuensi pendengaran manusia. Anjing bisa mendengar suara dengan frekuensi hingga 40.000 Hz.

6. Frekuensi Yang Bisa Didengar Lumba-lumba
Lumba-lumba merupakan binatang yang banyak disenangi kebanyakan orang dikarenakan mereka sangat pintar dan bisa bersahabat dengan manusia dibanding dengan binatang air lainnya. Lumba-lumba bisa mendengar suara dengan frekuensi hingga 100.000 Hz, dan mereka menggunakan gelombang ultrasonic sebagai media komunikasi antara satu dengan lainnya.

7. Frekuensi Yang Bisa Didengar Belalang
Binatang satu ini merupakan biantang yang sering saya kejar-kejar di sawah pada waktu saya masih anak-anak. Karena memang waktu kecil saya banyak menghabiskan keseharian saya dengan aktivitas alam. Binatang ini juga ternyata bisa mendengarkan suara dengan frekuensi diatas frekuensi pendengan manusia yaitu hingga 50.000 Hz.
 
sumber : http://indelektro.blogspot.co.id/2010/05/frekuensi-suara-yang-bisa-didengar.html

mekanisme pendengaran manusia LENGKAP

Bagaimana Mekanisme Proses Pendengaran pada manusia
 berikut uraian artikelnya :
Bagaimana bunyi dapat kita dengar? Mungkin pertanyaan seperti ini akan muncul ketika kita membahas tentang  bagaiamana proses manusia bisa mendengar sebuah suara, jadi seperti ini Suara, sampai pada lubang telinga karena getarannya diterima oleh gendang suara (membran timpani). Getaran di membran timpani ini akan diteruskan ke bagian tengah telinga yaitu ke tulang martil, landasan, kemudian sanggurdi. Impuls suara diteruskan ke telinga bagian dalam yaitu ke rumah siput dan merangsang saraf di sekitar cairan rumah siput dan dikirim ke otak. Selanjutnya di otak, suara tersebut diolah sehingga kita dapat mendengar dan mengartikannya. Secara skematis proses mendengar dapat ditulis sebagai berikut.
Getaran Suara =>… masuk….Daun telinga =>… masuk….Saluran pendengaran=>…ditangkap…Membran timpani=>…melewati…
Tulang martil=>…melewati…Tulang landasan=>…melewati…Tulang sanggurdi=>…diterima…Kortil=>…diteruskan…Lobus temporalis=>…hasil…<<Suara>>
 
sumber :http://agusgagah.blogspot.co.id/2014/03/bagaimana-mekanisme-proses-pendengaran.html

Pengertian dan Rumus Bunyi LENGKAP ~


A. PENGERTIAN BUNYI
Bunyi adalah salah satu gelombang dalam fisika, yaitu gelombang longitudinal yang dapat dirasakan oleh indera pendengaran (telinga). Bunyi juga dapat didefinisikan sebagai sesuatu yang dihasilkan oleh benda yang bergetar. Setiap getaran yang terjadi akan menggetarkan molekul atau partikel udara di sekitarnya, hal inilah yang menimbulkan bunyi. Benda yang menghasilkan bunyi disebut dengan Sumber bunyi.
B. SYARAT BUNYI DAPAT TERDENGAR
Agar suatu bunyi dapat didengar oleh manusia, maka harus memenuhi syarat-syarat berikut :
  • Ada benda yang bergetar (Ada sumber bunyi)
  • Ada medium yang merambatkan bunyi (baik melalui zat padat, cair atau gas)
  • Pendengar berada dalam jangkauan sumber bunyi
  • Frekuensi bunyi termasuk ke dalam frekuensi yang dapat didengar oleh penerima bunyi
       
    D. SIFAT – SIFAT BUNYI
  • Dikategorikan sebagai gelombang, yaitu berupa hasil getaran yang merambat.
  • Membutuhkan medium dalam perambatannya (tidak dapat merambat dalam ruang hampa).
  • Cepat rambatnya dipengaruhi oleh medium perambatannya. Semakin padat / rapat mediumnya maka semakin cepat perambatan bunyi.
  • Dapat mengalami Resonansi dan Pemantulan.
E. CEPAT RAMBAT BUNYI
Cepat rambat bunyi adalah kecepatan perambatan gelombang bunyi yang didapatkan dari hasil bagi jarak yang ditempuh dengan waktu tempuh bunyi tersebut. Ada dua hal utama yang mempengaruhi cepat rambat bunyi, yaitu :
  • Kerapatan partikel medium perambatannya. Semakin rapat susunan meidum tersebut maka akan semakin cepat bunyi merambat. Artinya perambatan bunyi pada zat padat lebih cepat dibandingkan ada zat cair.
  • Suhu medium perambatannya, semakin tinggi suhu medium perambatannya maka akan semakin cepat bunyi merambat, demikian pula sebaliknya.
Rumus cepat rambat bunyi adalah sebagai berikut :
Rumus Cepat Rambat Bunyi
RUMUS CEPAT RAMBAT BUNYI
atau jika yang diketahui frekuensi, panjang gelombang atau periodenya, maka dapat digunakan rumus berikut ini.
Rumus Cepat Rambat Bunyi
sumber :www.ilmudasar.com/2017/10/Penegrtian-Sifat-Cepat-Rambat-Pemantulan-dan-Macam-Macam-Bunyi-adalah.html

Pengertian dan Rumus Gelombang LENGKAP ~



B. GELOMBANG

Gelombang adalah getaran yang merambat. 
Berdasarkan ada tidaknya medium perambatan, terdapat dua jenis gelombang yaitu : 

a. Gelombang mekanik. 

Gelombang mekanik adalah gelombang yang memerlukan medium untuk merambat. Contoh, gelombang tali, gelombang permukaan air dan gelombang bunyi.



b. Gelombang elektromagnetik

Gelombang elektromagnetik adalah gelombang yang merambat tanpa memerlukan medium. Contoh, gelombang cahaya.

Berdasarkan arah getar dan rambatnya, terdapat dua jenis gelombang, yaitu :

a. Gelombang longitudinal.

Gelombang yang arah getarnya sejajar dengan arah rambatnya. Contohnya adalah gelombang bunyi diudara. 

Bentuk gelombang longitudinal :

 
Panjang satu gelombang untuk gelombang longitudinal terdiri dari satu rapatan dan satu regangan.



b. Gelombang transversal.

Gelombang yang arah getarnya tegak lurus dengan arah rambatnya. Contoh gelombang tali.  

Panjang gelombang diberi simbol "λ" (dibaca lambda), adalah panjang satu gelombang yang terdiri dari satu bukit dan satu lembah geombang.


Bentuk gelombang transversal :


Panjang gelombang pada gambar diatas adalah jarak a-e, b-f, d-h, c-g, e-i dan g-k.

Sedangkan amplitudo gelombangnya adalah jarak b-b', d-d', f-f', h-h' dan j-j'.
  

Pada gambar tersebut terlihat bahwa gelombang transversal berbentuk bukit gelombang dan lembah gelombang yang merambat. Istilah-istilah yang berkaitan dengan gelombang transversal adalah sebagai berikut.

- simpangan : jarak suatu titik gelombang terhadap posisi setimbang.


- puncak gelombang : titik tertinggi pada gelombang


- dasar gelombang : titik terendah pada gelombang


- bukit gelombang : lengkungan yang berada diatas posisi setimbang


- lembah gelombang : lengkungan yang berada dibawah posisi setimbang


- amplitudo : jarak puncak gelombang atau dasar gelombang terhadap posisi setimbang. 
1. Periode, Frekuensi dan Cepat Rambat Gelombang

a. Periode Gelombang

Gelombang juga memerlukan waktu dalam perambatannya. Selang waktu yang diperlukan untuk menempuh satu gelombang disebut periode. Periode disini sama artinya dengan selang waktu yang diperlukan untuk melakukan suatu getaran. Satuan periode adalah sekon.

 Untuk menentukan periode suatu gelombang kita bisa pake persamaan berikut.


b. Frekuensi Gelombang 
Frekuensi adalah gelombang yang terjadi dalam satu sekon. Satuan frekuensi adalah gelombang per sekon atau hertz (Hertz). Sama seperti getaran, frekuensi gelombang juga memiliki persamaan berikut.

c. Cepat Rambat Gelombang

Kecepatan gelombang sering disebut dengan cepat rambat gelombang yang diberi simbol "v".
Cepat rambat gelombang dapat ditentukan menggunakan persamaan berikut.



Sedangkan untuk menentukan panjang gelombang dapat digunakan persamaan berikut ini. 

sumber : https://frontpecintaislam.blogspot.co.id/2017/04/pengertian-rumus-getaran-dan-gelombang_17.html

Pengertian dan Rumus Getaran LENGKAP ~


A. GETARAN

Getaran adalah gerakan bolak-balik suatu benda melalui titik setimbang. Perhatikan gambar dibawah :




Dari gambar diatas, kita bisa liat bahwa satu getaran penuh dari ilustrasi bandul tersebut teridiri dari :

a. B-A-B-C-B 
b. A-B-C-B-A 
c. C-B-A-B-C

Semogakalian bisa ngerti ya, kalo gw jelasinnya kayak gitu. Kalo nggak ngerti ya dimengerti. Iya kan?


1. Simpangan dan Amplitudo Getaran 

Simpangan adalah jarak beban ketitik setimbang. 


Coba kalian perhatiin gambar pegas dibawah. Walaupun nggak mirip tapi anggap aja itu pegas. OK!
 


Dari gambar di atas, kita bisa liat kalo titik setimbangnya berada pada huruf "a". Ketika jarak beban ketitik setimbang 1 cm, kita katakan simpangan getaran 1 cm. Ketika jarak beban ketitik setimbang itu 3 cm, kita katakan simpangan getaran 3cm. Demikian seterusnya. Simpangan berubah tiap waktu karena benda mendekati atau menjauhi titik setimbang
Sedangkan amplitudo adalah simpangan terbesar dari suatu getaran. Besaran amplitudo dilambangkan dengan huruf "A". Dari gambar diatas kita bisa liat kalo amplitudo dari pegas tersebut adalah jarak a-b atau jarak a-c.


2. Periode Getaran

 Periode getaran adalah waktu yang diperlukan benda untuk melakukan suatu getaran. Periode getaran dilambangkan dengan huruf T. Untuk menentukan periode getaran kita dapat mengukur langsung waktu yang diperlukan untuk melakukan satu getaran penuh.

Namun, cara mengukur semacam ini seringkali menimbulkan kesalahan karena salah satu getaran biasanya berlangsung sangat singkat. 

Oleh karena itu, biasanya kita mengukur waktu yang diperlukan benda untuk melakukan sejumlah getaran. Periode getaran dapat dihitung dari waktu yang tercatat dibagi jumlah getaran.

Untuk mempermudah, kita bisa gunakan persamaan berikut.




3. Frekuensi Getaran

Frekuensi getaran adalah banyaknya getaran yang dilakukan benda setiap detik. Frekuensi dilambangkan dengan huruf "f". Satuan frekuensi adalah getaran per sekon atau diberi istilah khusus, yaitu hertz disingkat Hz.

Untuk menentukan frekuensi pada suatu getaran, kita bisa gunakan persamaan berikut ini.

Dengan :

f = frekuensi getaran (Hz)
N = jumlah getaran
t = waktu untuk sekali getaran
sumber :https://frontpecintaislam.blogspot.co.id/2017/04/pengertian-rumus-getaran-dan-gelombang_17.html